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1. Introduction
The object of this work is to study automorphism groups of compact complex sur-

faces.

For a compact complex manifold, in general, this group is a complex Lie group, and
its Lie algebra consists of the holomorphic vector fields. If the manifold M is of general
type, then the group Aut(M) is finite.(c.f. Kobayashi [10], and Kobayashi and Ochiai
[11]). Tt follows from a result of Bandman [2]| that if M has negative first Chern class,
(i.e. ample canonical bundle), then Aut(M) is bounded by a bound that depends only on
(=1)* ¢ (M) and Ky where n=dim M, and my is the least integer m such that K is

very ample. But he does not give any estimate for this bound.

In a relatively old paper Andreotti [1] gives a bound of Aut(M) when M is a com-
plex surface with negative first Chern class. More recently, Howard and Sommese [8] use
his proof for the general case, when M is a compact complex manifold with ¢, (M)<0.
However, applied to curves, their estimate is much weaker than the classical result of

Hurwitz.

Fujiki [6] proves that if M is the image of a compact Kaehler manifold, then there
is an exact sequence of complex Lie groups
O0—=L = Aut(M)—-T =0
where L is meromorphically equivalent to a linear group, T a complex torus. This gives

the best description of the structure of the group of automorphisms of M.

This work consists of describing the structure of automorphism groups of compact
surfaces. Essentially I give a description for Hopf surfaces (which are non Kaehler, and of
algebraic dimension one or zero), for elliptic surfaces, with the exception of elliptic K3,
and elliptic complex tori; and for the Inoue surfaces of Kodaira class VIlo. I include a
description for projective space, complex tori and the Hirzebruch rational surfaces,

although this is already well known, because the structure of the group of automor-

phisms is similar, or we need to make use of it.




For K3 surfaces the problem is still not solved in general, but much has been done

by Nikulin [14]. And using his results, Barth and Peters [3] have worked on the automor-

phisms of Enriques surfaces.




2. Projective Space
(c.f. Griffiths and Harris [7])

1. Notice first that any submanifold V of P* which is homologous to a hyperplane
H is indeed a hyperplane: If V is homologous to H and L is any line in P", then the
intersection number i(V,L)=1. If p and q are in V then the line L passing through p
and q gives also i(V,L)>2, unless L is contained in V. Since i(V,L}=1, we have that L is

contained in V. Hence V is a linear subspace of P".

2. Any biholomorphic automorphism is induced by a linear transformation of C"*.
If (yo, ...,y ) are homogeneous coordinates of P", write z;=w /yo in P* - H where
H={yo=0}. We know that the fundamental class of a hyperplane in P" generates
HYP*,Z). Soiffisin Aut(P"), f(H) is homologous to a hyperplane for any given hyper-
plane H, and f(H) is a hyperplane by 1. Composing f with a linear transformation we
may assume that [(H)=H. If H; = { y; = 0} are hyperplanes then

_ir [Hf }= {{I 1;31+...+Eﬂ' Iy =() }
and the pull back of z;, f “(z;) is a meromorphic function on P* with a single pole along

S (w)

ﬂn+ﬂ 1E |+...+ Qg Ty

H and a single zero along f (H;) hence is holomorphic on all of P®

and then constant. Therelore { is linear.

3. So we conclude that any biholomorphic automorphism of P* is induced by a
linear transformation of C**!, Obvicusly the transformations T and AT induce the same

transformation on P". Hence:

2.1. Theorem:

The group of biholomorphic transformations of the projective space of n-dimension is
given by PGL (n ,C)=GL (n +1,C)/<ul >, where p is any non-zero complex number, and

I is the identity matrix.




3. Complex Tori
If A is a lattice of rank 2n in C*, let T" =C" /A denote the complex torus of dimen-

n with period A. T itself is a complex Lie group, and the connected component
Aut(T) of the group of automorphisms of T is the same group T, acting by translation.
i [0 find Aut(T) we need to describe the isotropy group at one element, say the identity e
~of T. For this, note that any map X:T — T such that X(e)=e is induced by a linear
‘map on C*:

We denote by IT=(),,...,A;, ) the matrix whose columns are a basis for the lattice A, and

2, ..., 2, the coordinates of T* induced from C*. We denote the matrix X in terms of

the basis {z }.
The map X induces a linear map M:H,(T* ,Z) — H,(T",Z). But this homology group is

somorphic to the lattice A. Since M is a Z-module isomorphism, it has integer
coefficients, and X and M act both on II. So we have:

XM=ITM
(We may think of it in this terms: the differential structure of T* is R*" /Z**, and the
matrix IT is the matrix of change of basis from the standard basis for the lattice Z** to
the lattice A. So that we have the map ILR* /Z* — T* — C" /A and the map X acts
on T*, and M on R*" /Z*". And they act preserving the map I1).
Hence X € SL(n C) and M € SL (2n ,Z).
We can normalize IT in such a way that that it is equivalent to (I, @), where I is the iden-
tity matrix and 1 is a complex (n x n}matrix such that det(/m 2)20. Then using the
same notation: If X(e)=e then there exists a matrix M € SL (2n ,Z) such that

X(1.0)=(I )M

so if we write

M=[’f’3ﬁ]f SL (2n ,Z)

where A, B, C and D are each integral (n x n)-matrices. We obtain




3.1. Theorem:
For a complex torus T =C" /TI with II=(I ), the isotropy group at the identity e ¢ T"
is isomorphic to the solutions of the integral matrix equation

O=(A +QBYYB+00C),

where

M= [‘g.g] € SL(2n,2).

We always have the solutions M = +/,,. In the case of curves it is known that
this has other solutions if and only if Q=i or = *"/%, in which case M is in a subgroup
of order 4 or 6 respectively.

For higher dimensions, I do not know how to solve this equation, (in the case of
abelian varieties this is related to the concept of Complex Multiplication). Nevertheless
it is trivial to check that if we denote T; and T, the elliptic curves whose period

matrices are (1,i) and (1,6%/%) respectively, then their products: T;xT;, T;xT, and

T ,xT, have non trivial isotropy groups at e of orders greater than two.




4. Minimal Rational Surfaces
It is known that the minimal surfaces birational to P? are P? itself and the Hir-

zebruch rational surfaces which we proceed to describe.

If we denote by H'={()\,z) € P!xC%z €} the tautological line bundle over P!,
H its dual line bundle called the hyperplane line bundle and by C the trivial line bundle,
then the Hirzebruch surface F, is the projectivization of the vector bundle: L=H" +C.
That is,

nF,=P(H" +C) — P!

For each n, F, is characterized by its special divisors: E is the divisor induced by
the section (0,1) of L =H" +C. E, is induced by the section (¢,1) of L =H" +C, where &
is an element of HY(P',0 (H")). E is induced by {(x,0) : ¢ € H"} and, of course, C, is
the fibre #~!(z ) with z an element of PL.

Then the following is known: E, is homologous to E, and we have the following
intersection properties: EoEg=n, E E ,=-n, C; C, =0 for z, w two points of P!, and
¢ Eo=1.

The homology classes of E; and C, are the generators of H*F,,Z). In particular,
we have that E, = E¢nC,. Also F, has only one irreducible rational curve of self

intersection -n. This differentiates F, from F_, when n and m are different.

Notice that the intersection properties characterize the fibration on F, in a unique
way, that is, the fibres of F, — P! are the only possible fibration of F,. In fact, if there
exists a different fibration of F,, and il we denote by D one of its fibres, then
D==aEy + bC, and we have

0<DE ,=(aEy+bC, )(E¢-nC, )=b

0<DC, =(aE+bC, )C =s
and

0=DD =(aEy+bC P=a®n +2ab
but a>0, b>0 and n>0 make the latter impossible. So D must be homologous to a




fibre of mF, — P'. Hence D is a fibre. This implies:

4.1. Theorem:
(a) If n=0, Fy=P!'xP' and Aut (P'XP")=PGL (1)x PGL (1)XZ,.

(b) For n =1, the following exact sequence holds:
0= T = Ast(Fy) = PGL (1) =0,
where T is given by T =H(P',0 (H))XC*, with X denoting the semidirect product

and C° acting by multiplication on the first factor.

" Proof:

r{u.} If n=0, then F=P'XP' since H° is the trivial line bundle, and
HfP'xXP'Z) =Z+Z is generated by a=P'X{pt} and b={pt}xP'. Now, if
[ € Aut (P'xP'), then

fea=aa+73b
J o b==a +&b

where M = [gg is an integral matrix with determinant +1, because it is the matrix

of the induced map f. on the integral homology, with respect to the basis given by

a aad b. Notice that aa =bb =0 and ab =1, so we have that

0= .(a)f . (a )~(aa +8b P=205,
0=/ +(b)f + (b )=(va +8b )P=2-,

ﬂ:]_:"_"zf - [ﬁ ]Jr - [I'.' }=ﬂ$-‘-’rﬁ-=dﬁ‘[-"‘-f

Then necessarily:

ij §==0 and 5=0
or

i) =0 and #=0.

giving i& :l:ﬂl Or f‘i*& 5

We may compose [ with i(z,w)=(w,z) to obtain an automorphism inducing a map




(b)

as in i) in homology. Then we have that bf. (b )=0, with s ={pt } XxPL. If we take a
point (z,y) € £ (b) then (z,y) € f (6){z } XP', but this means that f (#) is con-
tained in {z}xP! i. e [ ({pt}xXP')={pt}xP!, and we get that [ is in
PGL (1,C)x PGL (1,C). Hence, an automorphism inducing a map as in ii) on homol-
ogy, corresponds to i(z,w)=(w,z) composed with a map of PGL(1)xPGL(1). And
we have that the automorphism i(z,w)=(w,z), together with PGL (1) X PGL (1) form

all the automorphisms of P! xP.

In this case, the P' fibration F, — P' is unique. Hence any automorphism of F,
maps fibres into fibres. So it induces an automorphism of P!, and all automor-
phisms of P! can be obtained in this way. Any automorphism of P! induces an
automorphism of C?-{0} and also induces an automorphism of the line bundle H,
with it we can get an automorphism of any line bundle of P' which induces the ori-
ginal automorphism on the base and commutes with the projection map of the line
bundle. This induces a map of F, with the same properties. So we have that
Aut (F, ) = PGL (1,C) is onto.

Now if T is the kernel, we want to prove: T=HYP.0 [Hﬁ}YD', with ¥ denoting
the semidirect product and C° acting by multiplication on the first factor. Let C
be a fibre and E, be the zero section as described above. They form a basis of
HoF, ,Z). Notice that the uniqueness of the divisor E  forces it to be mapped into
itsell by any automorphism [ of F,, and if f (C.)=0C, holds for all : € P!, then [
acts as the identity on E,. Let f € Aut(F,), and f (E;)=E, . We know that E,
15 homologous to aEy+bC. Then using the intersection properties of the generators
we get: By E; =n and E;, C=1 (since { maps fibres iﬁto fibres). so

ﬂ=EJr EJr =GEQEI '4‘505! =EEQ.EI + b
On the other hand, we have

1=E; C=aE,C +bCC =aE(C =a

and




E; Eq=EoEo+bCEq=n +b
obtaining b==0, and E; is homologous to E,.

Suposse that [ sends each fibre into itself i.e. f € T. Notice also that since f maps
each fibre into itself, leaving the "section at infinity” fixed, then P(H" +C)-E =L
is just a line bundle, and f consists of automorphisms of this line bundle acting on
each fibre. Also the zero section E of this line bundle L has self intersection n. So
that L is equivalent to H"® as line bundle over P'. In such a way that P(H" +C) is

really the completion of the fibres of the line bundle H"*. So, we have that for any

xin L,, (z € P')f acts as z —a(z )z +b(z) with a, ¢ in HYP',0(H")), and, since a

can never vanish, a (z) is constant; i.e. we have that f corresponds to

(b(z),a)€ HY(P', O (H"))xC"

and the composition law will be if f; corresponds to (b; (z),a;), then

fof z)=folaiz+b,(z))=aza,x+agh,(z)+byz)=f (z)
where [ corresponds to

(a2by(2)+b2(z),az2a,).
Obtaining that T is isomorphic to HYP 0O (H*))RC". Q.E.D.

Foi notations and properties of the Hirzebruch rational surfaces I followed Griffiths

and Harris [7], but the description of their automorphism group is a problem in Beauville

[4]-
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5. Hopf Surfaces
A Hopf surface is defined to be a compact complex surface which has W = C*-{0}

as its universal covering. Then all Hopf surfaces are biholomorphic to W/G, where G is
some group of biholomorphic automorphisms of C? leaving 0 fixed. The main reference

in this section is Kodaira [13]. We quote some properties of these surfaces:

1. There exists an element ¢ € G which is a contraction of C? such that ¢®
belongs to the center of G, for some integer n. Any Hopf surface S whose fundamental
group G is generated by one element g is called a primary Hopfl surface. Then there
exists a contraction f such that S=W/<f>. (Where <[> denotes the group generated
by f).

2. Any Hopf surface belongs to Kodaira class VIlo. This is the class of minimal
compact complex surfaces with b,=1, q=1 and p,=0. And, it has a finite unramified
normal covering surface which is a primary Hopf surface.

3. Any primary Hopf surface S is a quotient W/<<{> and there exists a system of
global complex coordinates on C? such that { has the form:

[ (z120)=(oy 2 +X2 T ,aq2,)
with m a positive integer, and the constants a;,a; , and ) satisfy:

(a-ag™)A=0 (*)

and
0< || <|az| <I. [**]
Remark: A compact complex surface S is called elliptic if there exists a holomorphic
map f:5 — C where C is a compact complex curve, and all but a finite number of
fibres of f are elliptic curves.
4. A Hopf surface S=W /<[> is elliptic if and only if A=0 and there exist positive

integers k and | such that af<aJ. We are assuming that f is as in (3).

5. If a Hopf surface S=W/G is elliptic and G is non abelian then there are global

coordinates on C® such that G is a subgroup of GL (2,C).
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6. If a Hopf surface S=W/G is not elliptic, then G is a direct product of an infinite
cyclic group Z and a finite cyclic group Z; of order d, G=Z+Z,. Z is generated by a
contraction f (z,2g)=(a;z,+Xz7 ,a325) with conditions on the constants as in (*) and
(**) of (3). Z, is generated by a linear transformation e (z,w)=(¢,z,e,w) where
{e;-¢a")A=0 and ¢,, e; are primitive d-roots of unity.

7. Notice also that if ¢ is any automorphism of a Hopf surface S=W /G, then ¢ lifts
to an automorphism ¢ of C? leaving the origin fixed, and such that for any g € G there
is some g’ € G such that gg=g’¢. This is just a consequence of the lifting property in
topology.

8. Finally notice that if f (z,,z)=(a;z,+AzJ ,052;) and A0, then equation (*)
implies

f T (zpzg)=(a)z +r a2 ] afz,)

So we consider now the two possible cases according as the algebraic dimension of
the Hopf surface S is one (S is elliptic) or zero (S has no non-trivial meromorphic fune-
tions)

I. Suppose that S=W/G is non elliptic. We know that G —=Z+Z, with Z generated
by f and Z, by g as in 6. Assume ¢ € Aut(S). Then ¢ lifts to an automorphism of C*?
which we will denote by the same letter.

a) Assume also that A5£0. Suppose the Taylor expansion of ¢ is given by

"‘l’[; Irz‘Z] =i {Eafl;nzi I;‘IZI! :Eb_fljnz ;Ij:i{z }

Observe that

¢g=9"¢
fur some integer r.

Otherwise there would be integers r, k such that

d9=f"g"¢,

but then
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gt =1 gt g,
ie. ¢=/ " ¢, and setting n — co we get that ¢ is constant, unless r=0, which is a con-

tradiction. (recall that f is a contraction). So ¢g=g*¢. Similarly, ¢f *=f "¢ (d is the
order of G). Suppose f®=(az,+pzJ bz,) and ps£0. Then we have as before that
a=b™ and we get f ™ =(a" 2;4ra"'u2T b7 2;). So that

81 (2 y2a)=(Doi s faz v tpz D ) (b2)'%, Dby ;a2 +p28 ) 1 (8:7)79)

and

Iz 2N =(a" En;iiszilzgﬂ +ra"lp[:EﬁJ-1,-tzflz;2 R 'Eb,-l_,-gz f‘zi* ).
Notice: On the first entry the degree of a is r and r-1 in a second term and the degree of
p is one. On the second entry there i1s no a or u and the degree of b is r. So: b; =0
unless j,=0 and j;—r From the first entry we can conclude r=1, i.e. ¢ and f ¢ com-
mute; since otherwise there would be terms on a? with 0<j<r. So we get that

bgy=const. , and b; ; =0 for all other 5, j;. Rewriting we get:
] ERTE E

81 (22 =(Da s faz+uz ) (b22)'?, boybas)

-
4z nag)=(a Da; ;.2'22> +p(boyza)™ , bboyzy

this means that a; ; =0 unless: either ;=1 and ¢,=0 then a,g==b} ; or ;=0 and i;=m
then ag,, is arbitrary. Since b™ =a, we get:
#(21,29)=(Az,+pz7 Bz, il
with B™ =A , l.e. Aut{S)={¢ : ¢ is as (***)}
b) Assume that A=0. Since S is non elliptic, we have that af£a? for all p, q non-

zero integers, and

6/ (zuza)=(Do; s (a2,) (b22)'%, b, (az,) (b22) )=
=f"g(zy,20)=(a" En.-l.-g::-'z:;“ NN 7 it flz;-’
So r=1, and ¢ must actually be of the form &(z,,z,)=(Az,,Bz,) so that

Aut(S)={ ¢ : ¢(z ,w)=(Az ,Bw) }.

As conclusion we obtain:
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5.1. Theorem:

If S=W/G is a non-elliptic Hopf surface, where the group G is described as in 6), then
i) Aut(S)={¢ : #(z ,w )=(Az +uw™ ,Bw) with B™ =A } if 2540,

and

i) Aut(S)={¢ : ¢(z ,w )=(Az ,Bw) } if x=0.

(In both cases A, B are complex numbers).

II. We assume now that S=W/G is an elliptic Hopf surface. Then its fundamental
group G may be abelian or not.
a) Assume that G is abelian. then G =Z+Z, ,+--+2Z;, and the cyclic group Z is generated
by f (z,w)={oyz,00w) so that A=0 and there are positive integers p and q such that
af=ag. Again as before, let ¢ € Aut(S) then ¢/ ™=f "¢ where m = m.c.m.{/,,...,.; }.
First check that r=1:
we write as before,

o s s
$lznz)=(Ta ;2122 Bb; 5.21'22%)

then
¢f '(21:&]:[2%1;2&: lﬂzni’f:lz;z, Eﬁj,j?ﬂﬁmflﬂﬂwﬂ; fli’;" ).
i f11:12}={ﬂ1m2¢.‘l£12:11? . ﬂzmzﬁg',j,zilzs?}
If we suppose a=ay and p and q are the smallest positive integers with this property,

then

hence
i r—i
oL S

. e~ 7 e -3
and in a similar way a, 'a;j?—ngﬂ", giving that a; l=ﬂ; ’2 consequen tly q divides ¢,, p

divides r—i, and so on. ie. ip=ng, r-i;=mp and similarly j,=hp and r—j,—mp so

that
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Hzuza=( L eux™:P, Y b zMp™)
nir-ag 20 air-ap 20
and also ¢f =/ "¢, but checking for the point (1,0) we see that r=1, and necesarily
n=0 in the series expansion of ¢ whenever p or q are different from 1. Hence Aut(S)={f
: f(z,w)=(Az,Bw)}.
Or n=0 and n=1 are the only two choices in the power series expansion if p==q=1; giv-
ing that ¢ is linear and Aut(S)={f € GL (2,0)}.

b) Now assume that S=W/G is elliptic and G is non abelian. Then Kodaira [13]
proves that there exist global coordinates such that G is a subgroup of GL(2,C). Se, it
is easy to see that the normalizer of G in GL (2,C), denoted Ng, is a group of biholo-
morphic automorphisms of 8. We want to verify that this is the only possibility, i.e. if
¢ € Aut (S ) then ¢ lifts to a linear transformation of C2
But again we know that there exists a primitive normal covering of S, W/<{> where
f (z,w)=(a;z ,a;w ) with a’=a so we have seen that if ¢ € Aut(5), then it induces an
automorphism of C? then it induces an automorphism of W/<{>; so that ¢ is in the

normalizer of <{> in GL (2,C) consequently ¢ is linear. So we obtain:

5.2. Theorem:

Assume that S=W/G is an elliptic Hopf surface. Then the group of biholomorphic auto-
merphisms is:

3) Aut(S)={f € GL (2,C) : f commutes with the elements of G }, if G is abelian;

and

b) Aut(S) is the normalizer of G in GL (2,C), if G is not abelian.
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6. Elliptic surfaces with no multiple fibres
To describe their basic properties, we follow Kodaira [11] closely. Assume that

S — A is an elliptic surface with no multiple singular fibres and no exceptional curve
on a fibre. Since most of the fibres of x except for a finite number of them are elliptic
curves, we can define a meromorphic function on A denoted by J in the following way:

If = € A is a regular point, we can write

7 z)=C/(Z+rZ) with Im(7)>0.

We denote by J the elliptic modular function. Then by abuse of notation J(z) is defined
to be J(7), (it does not depend on the value of r defining the elliptic curve x'(z)). So far
the definition makes sense only for regular values of =. Now the function J can be
extended to a meromorphic function on A. This is called the functional invariant of the
elliptic fibration. In a similar way, define a sheal G over A by defining the stalks over
the regular points as G, =H (n"'(z),Z), and extending this sheal in an appropriate way to
all of A. This is called the group invariant of the fibration. Then we consider the fam-
ily F(J,G) of elliptic surfaces which have J and G as their functional and group invari-

ants respectively.

In each family F(J,G) there exists a unique surface B (up to a biholomorphic
equivalence) such that ¢:B — A has a section 0:A — B. Then any S € F(J,G) is
obtained from B in the following way: Denote by B* the non-compact surface obtained
from B by deleting: 1) The points of B for which the map v is not regular and 2) the
components of the singular fibres that have multiplicity greater than one. Then
¢*(z)B* is either a regular fibre (if z is a regular value of ¥) or the union of several
copies of either C or C-{0}. Now B* — A has the structure of an analytic family of
abelian Lie groups over A such that the identity element on each fibre ¥7'(z) is precisely

the value of the section o(z).

Let o be an analytic section of B* over some open subset U of A. Then the auto-

morphism of ¢'(z)B* defined by z — z +o(y(z)) has a unique extension to an auto-
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morphism of ¢ '(z). Denote by {}{B* ) the sheafl of germs of sections of B¥ over A, and
ce H (A 0(B*)). Then we obtain an elliptic surface B® as follows: Choose a 1-cocycle
{o:; } representing o, and an open cover {U; } of A [or this coeycle. Then
B=|_Jy(U;)/=,

where the equivalence relation = is that z; € ¢7'(U;) and z; € ¢(U;) are equivalent if
and only if z=L;;(z;), and L 7' (U;; ) — ¢'(U;) is the unique extension of the auto-
morphism z — z+o,;(¥(z)). Notice that the fibres of B are the same as those of B; but
they are "glued” in a twisted way. Then the important result is that any elliptic surface

S in F(J,G) is obtained from B as § =B° for some o € H'(A,0(B*)).

As for the invariants of B, we denote by L the normal line bundle of the section
0(4) in B, and by K the canonical line bundle of A. Then ¢,(L )=—(p, +1), ([11] Thm.
12.3); and the Euler number of B is equal to the sum of the Euler numbers of the singu-

‘ar fibres. Hence it is zero if and only if there are no singular fibres.

Let S be an elliptic surface (with no restriction on the fibres) and denote by {a,}
the subset of points on A which have singular fibres, and by A! =4—{a,}. Any two

non-singular fibres are homotopic. Denote by C,=vy'(z) the fibre over : € A. It is also

true that C; with z € A’ is homologous to C—'_‘ (e.f. [12] sect. 4), in fact the divisor a,is

linearly equivalent to a divisor of the form Yomz on A, with z € A' and 3on; =],
Therefore the divisor O, is linearly equivalent to 2m O, , while each C. is homotopic to

C, for some z € A' . So we get that C,P and C, are homologous.

Suppose that S is an elliptic surface with no multiple singular fibres, 5 =87, where

o€ HY(AQ(B*)) and mS — A is the elliptic fibration, ¥:B — A is the basic member

with a section o :A — B of the family F(J,G) containing S.
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G is the maximal subgroup of Aut(S) which acts by automorphisms on each fibre (i.e.

t induces the identity map on the base curve A), then G is isomorphic to H(A,0(B* ).
Proof:

Let f :B — B be such that f (C,)=C, for all fibres C, of B. Then f induces a sec-
ion r € H(A,N(B* )) by setting

fz)=f(o(z)) for z €A,
and conversely, any section r induces an automorphism f acting on each fibre C, as fol-

fw)=w+ry{w)) forall weC,.
I will denote by r the section related to the automorphism f.

Suppose now that S=B° We want to verify that the group of automorphisms acting on
the fibres of S is the same as the one acting on the fibres of B.
First assume [ is as above. Then, if {U;} is the covering of A associated to the cocycle
{#;; } representing o, such that §=B°=|Jv'(U;)/> with z equivalent to z; if and only
i 5=L;;(2; )=z; +0;;(¥(2;)), then we have that f () is equivalent to f (z;) because:
F(Lij (27 ))=Lij (z; )+ (¥ Ls; (2;))

=2z; +r((2; ))+oi; (¥(2;))

=/ (z; Wi (WS (2;))=Li; (f (2;)).
Conversely, if f is an automorphism of S acting on the fibres, then from the deseription

of S as B, z;==z; if and only if f (z;)=f (z;). Hence { acts as an automorphism on each

fibre of ¥~'(U; ) and induces an automorphism on the fibres of B. Q. E. D.

Case L.

Assume that the group invariant G of the family is not trivial. This means that

eq(B }=12(p, —¢ +1)=12(p, +1)>>0, or equivalently, that there are singular fibres.
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8.2. Lemma:
If an elliptic surface S has singular fibres, then

dim Aut (S)=0.

Proof:

If the dimension is greater than zero, then the dimension of the Lie algebra of holo-
morphic vector fields is positive. Since the Euler number is also positive, every vector
field has zeros. But a theorem of Carrel, Howard and Kosniowski [5] shows that if a com-
pact complex surface has a holomorphic vector field with zeros, then the surface is either
of Kodaira class VII (i.e. b,(S)=1), or a ruled surface or a rational surface. But if any of
these is elliptic, we know that it has no singular fibres, or ¢,(5)=0. Hence Aut(S) is a

discrete group. Q.E.D.

Next we want to see for what cases an automorphism will preserve the elliptic
fibration. This is already true if the surface is not algebraic, since in that case, the ellip-

tic fibration is unique as shown by Kodaira ([12] Thm. 4.3).

Snppose now that the canonical bundles of S and of B are denoted by K and Kp

respectively. Then we know that there are line bundles on A denoted by K and L, where

K is its canonical bundle and L is the normal bundle of o{A) in B such that

Ks=n"(K-L) and Kg=v (K-L) ({13] Thm. 12 and [12] Thm. 12.1 resp.). Let

K-L=Y)n,z with z € A, n, € Z. Then the canonical divisors of B and S are given by
Kg=Yn. C,=y"(Xn,2), Ks=r"(}n,2).

Since ¢,(K)=2p-2 and ¢,(L }=—(p.+1) where p is the genus of A and p, is the arith-

metic genus of S or B (they agree), we have

En, =2p -24p, +1
By Jacobi’s inversion theorem, if Y n, >p (or Y n, <-p), then the line bundle K-L comes

e
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rom an effective divisor (or from minus an effective divisor). This means that we can
hoose points z € A such that n, >0 (or n, <0). This occurs if:

#) 2p -2+p, +1>p which happens if p >2, or if p=1 and p, >0, or if p=0 and p, >1

(**) 2p -2+p, +1<-p which happens if an only if p=0 and p, <1).

We conclude that the two exceptions to Y3n, >p (or Jin, <-p) are

i) p=1 and p, =0,

i) p=0 and p, =1.

Assume now that S is an elliptic surface not satisfying i) and ii), and f:§ — S is
‘a0 sutomorphism. Then we claim that f maps fibres into fibres. If not, then since
C,=n"Y(z) is a divisor of S, we have that f (C,)C, >0 (i.e. the intersection of a fibre with
the image f of a fibre under [ is positive), and then f (C,)C, >0 because any two fibres
are homologous. Consider now the canonical bundle: Kg=%n, C, with all n, >0 (or all
n, <0 respectively). Then

0=Ks Ks=Ks f (Ks)=(3n: C: X ne [ (Co )= om0, C, f (Cy)
will be positive, giving a contradiction. Hence f maps fibres to fibres.

We consider now case i), so that A is an elliptic curve, and the arithmetic genus of
Sis 0. Recall that we are assuming the existence of at least one singular fibre. Then if
f'5 — 8 does not send fibres into fibres, we have that lor some fibre O, we have
C, f (C.)=n >0. Since the map =f :C, — A is not constant, so in fact it is onto. (Notice
thet for intersection properties, all fibres ¢, and C, are homologous, so that
f(C.)Ce=F (C:)C.). In particular, this is true for singular fibres too, but non-multiple
singular fibres consist of the union of projective lines, and we can not map a projective
line onto an elliptic curve. So necessarily f maps fibres into fibres, preserving the elliptic

fibration of S.

Consider now case ii). Then A is a projective line, and the arithmetic genus of S is

1. Then the canonical bundle of S is the pull-back of the trivial line bundle of P!. This




implies that q(S)=0, p, (5 )==1 and ¢(S)=24. Then S is a K3 surface.

Then we conculde:

6.3. Theorem:

If §is any elliptic surface without multiple singular fibres, =5 — A the elliptic fibration,
and B the basic member of the family containing S, ¢o{5)>0 and S is not an algebraic
K3 surface, then we have an exact sequence

0— HYAQ(B*)) — Aut(§) — G —0,
where G is a subgroup of the group of automorphisms of A.

fi.4. Remarks:

il the elliptic K3 surface is non algebraic, we know that the elliptic fibration is unique.
But there are examples of algebraic elliptic K3 surfaces with more than one elliptie sur-
face structure.( c.f. Shioda and Inose [16]).

It may happen that the group Aut(S) may be infinite discrete.(c.f. Shioda [15]).

Case II.

Suppose that 5 is an elliptic surface with no singular fibre, i.e. ¢4(5)==0. Then S is
a fibre bundle over A, where =5 — A is the elliptic fibration with fibre C an elliptic
curve. In this case the busic member of the family is B=AX(C, B¥=BF. And we
wseme that §+=8" for some o & H(A0(H ).

We want to find the surfaces of this class for which all automorphisms preserve the
fibration. A similar argument as before will work. The canonical bundle is
Ke=3%n, C,=¢*(K-L). Now,Lisa topologically trivial line bundle. So if f is an auto-

morphism of S, we have

0=K32=K5 _pr [E_g }=EI’1’, n, {:-',_ f {Uw }
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Now, the bundle K-L comes from an effective divisor provided that
deg (K -L )=deg (K )=£0 i.e. if A is not a complex torus. So in this case the automorphism
f :§ — 5 maps fibres into fibres and the coefficients n, are all positive (or all negative),
giving that C, f (C,)=0. Hence [ maps fibres to fibres preserving the elliptic fibration.

Thus we have an exact sequence as in the last theorem.

6.5. Theorem:

Assume that S is an elliptic surface with no singular fibres, such that §=B°, B=AX(C
where A is a Riemann surface and C is analytically equivalent to a fibre. If S is not an
abelian surface then the exact sequence holds:

0— HYAQB)) — Aut(5) = G —0,
where G is a subgroup of the group of automorphisms of A.

Notice that now the group H%A,((B)) contains Auty(C), and is of dimension at

least one.

8.68. Remarks:

The exceptions for elliptic tori and elliptic K3 surfaces are real exceptions, as we can
easily check by the following examples:

Let C be an elliptic curve. If T=0C xC then f(z,w)=(w,z) gives an automorphism that
does not preserve the elliptic fibration.

For a K3 surface, consider the Kummer surface S obtained from T (by taking the
desingularization of the quotient of T/<j> where i(z,w)=-(z,w)). Now the same map [
as before commutes with the involution j, so  is well defined on S, and certainly it will
not preserve the elliptic fibration on S induced from that on T.

Similar examples can be produced by considering T=0C xH, with C and H two eiiiptic

curves with the property that there exists a map from C onto H.




7. Elliptic surfaces with multiple singular fibres
Let S be a relatively minimal elliptic surface with multiple singular fibres, and

mS — A be the elliptic fibration. Suppose that the fibres {C‘,p}, p=123,.. are the
singular fibres and C,, are of type m,ly, for 1<p<k where m,>2, and C., are the sim-
ple fibres for p>k. Let my be the least common multiple of m,, mgy ..., my,
d==mmg...my, and choose arbitrarily a, € A-| J{a,} to construct a d-fold abelian cover-
ing A — A which is unramified over A-{ag,a,, ..., a }, and has l.'l.,,":l:l-a.l'r branch points of
order m,-1 over each a, for p=0,1,.. k. Let 5 be the analytic fibre space of elliptic
curves over A induced from S, and denote by 7 the canonical projection. § is an abelian
cover of S which is unramified over V-C, and has d/mg branch curves over C, . Let G
be the covering transformation group of A with respect to A; then G acts on § as a
group of automorphisms and §=5/G. § is free from multiple fibres and if § =87, it is
known that (§,G )=(B,G)’, ie. S is obtained from B°/G; and G also acts as a group of

automorphisms on B that leave invariant the curve o (A) contained in B. ([12] sect. 15)

7.1. Theorem:

Let S be an elliptic surface with multiple singular fibres. Assume that S is obtained
from (B,G)° as above. Except in the following two cases: S is algebraic and either
€2(5)<24 and A is a projective line, or ¢4(5)=0 and A is an elliptic curve; we have an
exact sequence

0— HYADQB*)) — Aut(S) — H — 0,
where H is a subgroup of the group of automorphisms of A.

Proof:

We check first that any automorphism f of S maps fibres into fibres. For this, we

follow essentially the same arguments as before. Consider the canonical bundle of S:

Ks=y¢"(Ka-L +Y(m ,-1)P,
where P, denotes the singular fibres with multiplicity m,, K is the canonical bundle of
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the base curve and L is a line bundle of A with ¢ (L )J=—(p,(5)+1). ([13] Thm. 12). We
know that ¢ (K s—L )=+" (¥ n, z) for some z € A; and that the divisor Yn, z is effective
if the genus p of A is greater than 1. In this case, by considering intersection properties

as before, [ maps fibres into fibres.

If p=1 and S has simple singular fibres, they are projective curves and can not be
mapped onto the base curve and then any automorphism maps fibres into fibres. Simi-
larly if any of the P, is projective. If this is not the case, then since ¢ 4(5) equals the sum
of the Euler number of the singular fibres and they are all multiple elliptic curves, then

it is zero and we can not conclude that fibres have to be mapped into fibres.

If the base curve is P' then the divisor })n,z is effective provided its degree
-2+p,(5)+1 is positive, i.e. ¢,(-L )=p, +1>2. But ¢4(5)=12(p, +1) (c.f. [12] formula 12.5
and (13| Thm.12). Thus the only possible exception for fibres to be mapped into fibres

occurs if c(5)<24.

Since the construction of § — A depends canonically on § — A, any automorphism

of S acting as the identity on the base curve lifts to an automorphism of 5.

Finally we need to verify that the group of automorphisms that acts as automor-
phims on each fibre is H%A,Q(B*)). But notice that G acts on B leaving invariant the
section o (A), that is, for any automorphism f induced by a section of H%A,Q(B*)) and
aLy g € G, we have fg=gf . Hence / acts as an automorphism on B?/G =S5 leaving
the fibres fixed. And conversely, any automorphism f of § leaving the fibres fixed, lifts
to an automorphism of B?, and since G does not move o (A) we have again that fg=gf

forany y €G. Q. E. D.




24

8. Inoue surfaces
Inoue constructed some examples of surfaces of type VIlo (i.e. b,=1 and p,=0) in

[9]. An Inoue surface S is characterized by: i) b,(S)=1 and b4(S)=0, ii) S contains no
curve, and iil) There exists a line bundle F of S such that H%S ,Q'(F))£0. In particular
they are all non-Kaehler.

There are three types of these surfaces, to be described below. We follow Inoue [9]

for the descriptions and notation.

8.1. Surfaces 5y
Let M =(my;) € 5L (3,Z) be a unimodular matrix with eigenvalues a, 8, & such that
a>1, p7#B. Choose a real eigenvector (a,aza;) and an eigenvector (b,bgbs) of M

corresponding to o and g respectively. Denote by H the upper half-plane in C, and let

Gy be the group of holomorphic transformations of HxC generated by:

golz,w)=(az pfuw)
9 (2w )=(z +a; ,w+b; }: 1 =1,23.
l Then Sy =HXC /Gy .

Inoue proves that H° Sy ,0)=0, where © denotes the sheaf of holomorphic vector

| fields on Sy ([9] Prop. 2). This means that dim Aut (5, )=0.

G has the following relations:

8i9;,=4; & for £:1L=1r2l3'
900 95" =91 92" %g5"® for i=12,3.
We dencte by I' the subgroup generated by ¢; for i=1,2,3.

The subgroups <go> and I' are normal in G. If f € Aut(Sy), then s lifts to an
automorphism of HXC, HXC/<g,> and HXC/T; since they are normal coverings of
Sy . We denote by f any of these lifts, and denote by (z,w) the coordinates of HxC.
Then f (z,w)=(f i(z,w),f o(z,w)).

Notice that f ,(z,w) does not depend of w, otherwise it would induce non-constant

maps from H onto C which is impossible.
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Also for each z € H fixed, f4z,_):C — C is one-to-one and onto, so we have:
fi(z,w)=az+b /bz+d with a,b,c,d €R and fofz,w)=0(z)w+nz) witho, rnHz - C
analytic. Then f must satisfy: fgo=g8f , and fg,=gf for i=1,2, or 3, k a non-zero
integer and ¢ €T. And any ¢ €T is of the form g (z,w)=(z+3Y n; a; ,w+3 n; ;).

Now

Foolz w)=1 (az Bw)=((a az +b)/(c az +4), o{az 8w +r{az )
=90/ (z,w)=(a" (az +b)/(cz +d), " (o(2 )w +7{z))
holds for all (z,w)€ HxC. Then we obtain: b=c =0, o(z) is constant, r=1 and

1z )=0.

Then f (z ,w )=(az ,bw) for some ¢« €R, ¢ >0 and b} € C. But now,

f9i(z w)=]f (z+a; 0 +b; }=(a (z +a; )b (w+b; )=

91'92°05"f (2,0)=(az + 1 a;, bw+Fnib;).
Consequently a =b =n;, implying that {(z,w)=(nz,nw) with n a positive integer. Since f

is invertible, we conclude that n=1.

8.1.1. Theorem

If 5y is an Inoue surface as described above, then Aut (Sy)={1d }.

8.2. Surfaces Sﬁf,].'r,l”,_

Let N ==(n,;) € SL(2,Z) be a unimodular matrix with two real eigenvalues o and 1/a
with @>1. Choose real eigenvectors (a,a4), (§,,b5) of N corresponding to « and 1/a, and

fix integers p, q, r (r#0) and a complex number t. Let (¢ ,c5) be a solution of

(enea)=(e e IN* +(e1,ea)+—(b 102000 1)p q),

where N' denotes the transpose of N and

1 1 i
G =gn i(ni-1)a b 1+-2'ﬂf2{ﬂi g1)aghg+n; niohia, (F=12)
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Let G =GN} ,.... be the group of holomorphic transformations of HxC generated
by

n{z 0 ]=I:n'z R ]
gilz w)l=(z+a; ,w+b;z+¢;), for i =12,

galz w)=(z ,w +%{b ag=bgay)).

And define S=54%) , .. =HXC/G.
We have the following relations between the generators of G :

gsgi=g: 95 for i =012, g¢.'9:% ,9:—=9%"

o s, 0. n
god 190" =91 "92"98  goga9q’ -Flmi’:ﬂﬂ'
We consider as before the normal subgroups <<go> and I' generated by g; with i=1,2

and 3.

As before we have for any automorphism f of §, fgo=¢] and fg,=g¢gf for some
integer r, and some g €I, and any element g of T is of the form
gz, w)=(z+ma w+Ym;ib;z+K) with K some constant. And
f (z,w)=(az +b ,0(z Jw +1z)).

As with Sy we get that r=1, a =1, and b =0; since the action on the first coordi-
nates is of the same type. And also:

£ 90l sw)=(az o{az Y+t )+raz )=gof (z,w)=(az o{z Jw-+r(z)+t)
That is

oz )w+rz )+t =claz w+t J+raz)
holds for all (z,w) € HXC. Thus r€ C is constant and o==1.

Now we obtain that f actualy commutes with the generators of G, so it induces
an  automorphism of S§. I remark that Inoue proves (Prop. 3 in [9]) that

dim H°(S{%) , .. ,©)=1. We have proved:

8.2.1. Theorem

If SmmSt) e is the Inoue surface described above then
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Aut (5)={f [z ,w)=(z ,w+7):r € C}.

8.3. Surfaces S5\ ,...
Let N=(n;;) € GL(2,Z) be a matrix with determinant -1 having real eigenvalues o,
-1/a such that a>1. We choose real eigenvectors (a,,a4), (b,b2) of N corresponding to a

and -1/a respectively, and fix integers p, q, r (r#£0). Define (¢ ,¢4) to be the solution of

Herea)=(c1eIN* +(eye 1+ (3 107-b20.1)(p 19)

where N*' denotes the transpose of NV and

ﬂi“‘%ﬂilfﬂfr”‘151+'él-ﬂm{ﬂzr1}ﬂnﬁz+ﬂnﬂmhﬂn (f=12).
Let G =Gy} ., denote the group of holomorphic transformations of HXC gen-
erated by

golz,w)=(az ,~w),
gi(z,w)=(z+a; ,w+b; +¢;) for 1=1,2;

g3(z,w)=(z ,w +-::—{E 18 5-b 2a ).
And define =5y , , =HxC/q.

Then Sy} ,. bas an Sy , .o as an unramified double covering surface, and
dim H°(S\7) , ,..©)=0. (Prop.5 in [9)).
We have the lollowing relations in @ :

g30i=g;9s fori=12 §1_1F2_191§5~=F5'

s n L3 = e i
Jog19g =g gz gk Jodadg *g?*'n;'”a!' gofado’ =gs"
So that the group <<go> and '=<g,, g5, g3 are normal in @, as in the previous case.

If 7 is an automorphism of Sy} , ., then f is of the form f (z,w)=(z,w +r) and

/ commutes with g, (same computation as for the last case). And

Joolz ,w)=(az ~w+r)=g,f (z,w)=(az ~w -7,
for all (z,w) € HXC, hence r=0.




a -3 i1 - Thﬂﬂrem

The Inoue surface Sy} , .. constructed above has no non-trivial automorphism.
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